The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  1  X  X  X  1  1  1  1  1  1  X  X  X  X  1  X  X  X  1  1  1  1 X^2 X^2 X^2 X^2 X^2 X^2 X^2  1  X  X  X  X  X  X  X  X  1  1  1  1  1  1  X  1  1  1  1  1  1  1  1  1
 0  2  0  0  0  2  2  2  0  0  0  0  2  2  2  2  0  0  0  0  2  2  2  2  0  0  0  0  2  2  2  2  2  0  0  0  2  2  2  0  0  0  2  2  2  2  0  0  0  0  2  2  2  2  0  0  2  2  0  2  2  0  0  0  2  0  2  0  2  2  0  0  2  0  2  2  0  2  0  0  0  2  0  2  2  0
 0  0  2  0  2  2  2  0  0  0  2  2  2  2  0  0  0  0  2  2  2  2  0  0  0  0  2  2  2  2  0  0  2  0  2  2  2  0  0  0  0  2  2  2  0  0  2  0  2  2  2  2  0  0  0  2  2  0  2  2  0  0  0  2  2  0  0  2  2  0  0  2  2  2  2  0  0  0  0  0  2  2  2  2  0  0
 0  0  0  2  2  0  2  2  0  2  2  0  0  2  2  0  0  2  2  0  0  2  2  0  0  2  2  0  0  2  2  0  0  2  2  0  2  2  0  0  2  2  0  2  2  0  0  2  2  0  0  2  2  0  2  2  0  0  0  2  2  0  2  2  0  0  0  0  2  2  2  2  0  0  2  2  0  0  0  2  2  0  0  2  2  0

generates a code of length 86 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 85.

Homogenous weight enumerator: w(x)=1x^0+28x^85+82x^86+6x^88+4x^90+4x^93+2x^102+1x^112

The gray image is a code over GF(2) with n=688, k=7 and d=340.
This code was found by Heurico 1.16 in 0.453 seconds.